Vector-valued reproducing kernel Banach spaces with applications to multi-task learning
نویسندگان
چکیده
Motivated by multi-task machine learning with Banach spaces, we propose the notion of vector-valued reproducing kernel Banach spaces (RKBSs). Basic properties of the spaces and the associated reproducing kernels are investigated. We also present feature map constructions and several concrete examples of vector-valued RKBSs. The theory is then applied to multi-task machine learning. Especially, the representer theoremand characterization equations for theminimizer of regularized learning schemes in vector-valued RKBSs are established. © 2012 Elsevier Inc. All rights reserved.
منابع مشابه
ar X iv : 1 11 1 . 10 37 v 2 [ m at h . FA ] 1 7 Fe b 20 12 Vector - valued Reproducing Kernel Banach Spaces with Applications to Multi - task Learning ∗
Motivated by multi-task machine learning with Banach spaces, we propose the notion of vectorvalued reproducing kernel Banach spaces (RKBS). Basic properties of the spaces and the associated reproducing kernels are investigated. We also present feature map constructions and several concrete examples of vector-valued RKBS. The theory is then applied to multi-task machine learning. Especially, the...
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملStability of Multi-Task Kernel Regression Algorithms
We study the stability properties of nonlinear multi-task regression in reproducing Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are appropriate for learning problems with nonscalar outputs like multi-task learning and structured output prediction. We show that multi-task kernel regression algorithms are uniformly stable in the general case of infinite-d...
متن کاملA Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning
This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two imp...
متن کاملRefinement of Operator-valued Reproducing Kernels
This paper studies the construction of a refinement kernel for a given operator-valued reproducing kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel contains that of the given kernel as a subspace. The study is motivated from the need of updating the current operator-valued reproducing kernel in multi-task learning when underfitting or overfitting occu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complexity
دوره 29 شماره
صفحات -
تاریخ انتشار 2013